Dada la ecuación f(x) = b, el conjunto de soluciones de la ecuación viene dado por S = f–1(b), donde f–1 es la imagen inversa de f. Si S es el conjunto vacío, la ecuación no es soluble; si tiene solo un elemento, la ecuación tendrá solución única; y si S posee más de un elemento, todos ellos serán soluciones de la ecuación.
En la teoría de ecuaciones diferenciales, no se trata solo de averiguar la expresión explícita de las soluciones, sino determinar si una ecuación determinada tiene solución y si esta es única. Uno de los métodos más corrientes para probar que existe una solución, consiste en aprovechar que el conjunto A tiene alguna topología. No es el único: en los sistemas de ecuaciones reales, se recurre a técnicas algebraicas para averiguar si estos sistemas tienen solución. No obstante, el álgebra carece de recursos para asegurar la existencia de soluciones en las ecuaciones algebraicas: para asegurar que toda ecuación algebraica con coeficientes complejos tiene una solución, hay que recurrir al análisis complejo y , por lo tanto, a la topología .
No comments:
Post a Comment